@ Modules in 2.6: Breaking The Kernel,
e and What I Learned

Rusty Russell

IBM Linux Technology Center, OzLabs
Canberra, Australia

rust y@ ust corp. com au
rusty@u. i bmcom

@

e-business |

Contents

Tmme Better Spent

Who 1s Rusty Russell?

2001: A Small Problem

31 October 2002: Kernel Freeze
Richard Henderson

David S. Miller

New Features

Conclusion

© Time Better Spent

e-business

e Read The Lions Book

* Read the original TDB source code.

* Read “Elements of Programming Style”

* Become famihiar with the following software:
— gperf
- gemu
— 1Sync
- valgrind
— ccache

— distce

@

e-business

Who Is Rusty Russell?

Lmux Kernel Programmer
— 1pchains, netfilter, futexes, per-cpu variables, modules,...
Author of the original Linux Graphing Project
— http://fcgp.sourceforge.net/
Organizer of the first Australian Linux Conference
— http://www.linux.org.au/projects/calu/
Author of Networking Concepts HOWTO
— http://www.netfilter.org/unreliable-guides/
KernelTrap Interview:

— http://kerneltrap.org/node/view/892

2001: A Small Project

@

e-business

January 2001: Connection Tracking

1ip_conntrack: a module for tracking IP network
connections.

All modules have a usage count.

1ip_conntrack usage count always zero

— When removed, waited (sometimes forever!) until all
connections ended.

Making reference count mcrease per connection

— Slow

— Would make the module unremovable for most people.

A new module unload method was needed.

March 2001: The Module Code

* How hard would it be to modify the module code?

Rusty's Lesson #1

Many Major Projects Start With:
“I Only Need To Change This One Thing...”

@

e-business

The Old Module Code

Inserting a module 1s done as follows:

— query module(QM_ MODULES) to return list of modules
— query_module(QM_INFO) on each one to see 1f it's active

- query module(QM_SYMBOLS) to get the values of symbols
exported by that module.

— create_module(name, size) to get the address of the module.

— Do module linking for that architecture.

* Perform relocations
* List dependencies in header
— Call init module(name, struct module)

e Kernel verifies structure.

* Kemel attaches dependencies

@ The Old Module Code

e-business

* Changing the code 1s difficult, since userspace (modutils)
and kernel distributed separately.

* For example, to add a field to the module structure

— Inside the kernel, use mod member present() to detect old
userspace, and deal with it.

— Inside userspace, detect old kernel versions and deal with them.

© July 2001: Some New Module Code

e-business

* [experimented with doing the linking inside the kernel.

* Inserting a module 1s done as follows:

— Call init_module(pointer, size, option-string)
* Kemel resolves symbols and dependencies

* Kemel parses user options

e Kernel calls init function.

e Old insmod: 7103 lines of code

@ New Insmod

e-business

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[])

int fd = 0;
void *p;
struct stat st;

if (argc > 1)
fd = open(argv[1], O RDONLY);

fstat(fd, &st);
p = mmap(NULL, st.st size, PROT _READ, MAP_ PRIVATE, {d, 0);
return syscall(_ NR init module, p, st.st_size, argc>2 ? argv[2] : "");

@ Kernel Size

e-business

* Userspace gets smaller, but how much larger 1s the
kernel?

e 2 4 module code: 1284 lines

— create_module - 50 lines
— 1t _module - 230 lines

— delete module - 80 lines
— query _module - 270 lines
— /proc/modules - 80 lines

— /proc/ksyms - 80 lines

Userspace

Allocator, etc

Diagram of New Module Code

=

Userspace

Allocator, et

@ Kernel Size

e-business

* 2.4 module code: 1284 lmes

e 2.6 module code: 1157 lines + arch code
e 2.61386 arch code: 130 lines (smallest)
* 2.6 1a64 arch code: 875 lines (largest)

Rusty's Lesson #2

You'll Only Ever Know If You Write The Code.

October 31 2002: Kernel Freeze

@ October 2002: Kernel Freeze

e-business

* As organized at the kernel summit, the kernel entered
Feature Freeze on October 31, 2002.

— The new module code was not in the kernel.

© November 2002: Module Merge

e-business

* At breakfast before leaving Japan (for Spain), Anton
Blanchard tells me Lius has mcluded my patch.

— But module parameter code 1s not included

— Userspace utilities are primitive (no modprobe)
— Only 1386 works at all

* [didn't get much sleep m Spain.

Rusty's Lesson #3

Linus Always Chooses The Worst Time To Apply
Your Patch.

@ The Great Module War

e-business

It's still in flux, as Rusty combines world-wide travel plus
frantic bug-fixing as he 1s bemg pursued (virtually) around
the world by hordes of angry kernel developers.

-- Theodore Ts'o, Linux Kernel Mailing List

C, November 2002: David S Miller

e-business

* Dave Miller 1s the Linux Networking Maintamer.
* Dave Miller 1s the Sparc64 Architecture Mamtainer.
* Dave Miller did the original SPARCLinux port.

@ David S. Miller

e-business

* Sparc and Sparc64 need modules placed in the lowest
2GB of memory.

— I knew this

— Architectures defined “module alloc” which the module code
calls to allocate space for the two parts of the module

* The 1nit code (to be discarded after initialization)
* The rest of the module

— The module structure 1tself was called using the normal
“kmalloc” inside the kernel.

@ David S Miller

e-business

* The Sparc allocator always allocates pages (4096 bytes):
module_aFIIoc(INIT SECTIONS)

module_allloc(OTHER SECTIONS)

1)

kmalloc(struct module

WASTED MEMORY: [”

@ David S Miller

e-business

To: rusty(@rustcorp.com.au
Subject: Re: new module stuff
From: "David S. Miller" <davem(@redhat.com>

Dude, you have to allocate the struct module in the module section just like
the old code. I build sparc64 kernel modules into the lower 32-bits of the
kernel address space, and if init module 1s kmalloc()'d it can't be relocated

properly.

@ David S Miller

e-business

e The obvious solution:

module_aFIIoc(INIT SECTIONS)

module_glloc(OTHER SECTIONS)

[T

module_alloc(struct module)

WASTED MEMORY: D:I]

@

e-business

David S Miller

From: Rusty Russell <rusty(@rustcorp.com.au>
To: "David S. Miller" <davem@redhat.com>
Subject: Re: new module stuff

In message <20021114.100125.118043272.davem(@redhat.com> you write:
> How about this, in the module alloc call you allocate size + sizeof(*mod)

I already tack the user-supplied options on the end of the module, so your
optimization interferes with my optimization 8)

I *will* code you a solution: struct module on sparc64 is 2368 bytes for
NR_ CPUS=32 (384 for UP).

You deserve it for just getting down and helping code, rather than bitching
about breakage)

Thanks!
Rusty.

@ David S Miller

e-business

To: rusty(@rustcorp.com.au
Subject: Re: new module stuff
From: "David S. Miller" <davem(@redhat.com>

I'm not going to argue about 1 page for now, implement this fix however you
want and then we'll revisit this later. :-)

Rusty's Lesson #4

Dave Miller 1s Cool.

Rusty's Lesson #4a

Architecture Maintainers Are Some of The Smartest
(and Nicest) Programmers To Work With.

@ November 2002: Richard Henderson

e-business

* Richard Henderson 1s the Alpha Linux Maintainer.

e Richard Henderson 1s a GCC maintainer.

* Richard Henderson gave the keynote at the GCC summut.

@ December 2002: Richard Henderson

e-business

* Richard Henderson reported some problems he found m
my in-kernel module loader.

— He wrote some beautiful patches which I took.

One more thing;

Are you really REALLY sure you don't want to load ET DYN or ET EXEC

files (aka shared libraries or executables) instead of ET REL files (aka .o
files)?

@ December 2002: Richard Henderson

e-business

* [t turns out that shared objects are much simpler to load
than .o files

— Normally .so (ET _DYN) objects are compiled to be position
independent (-fPI1C).

* This makes them slightly slower than normal code.
— But they don't have to be.

Rusty's Lesson #5

Ideas From Old Code Stay In Y our Brain.

@ December 2002: Richard Henderson

e-business

From: Rusty Russell <rusty(@rustcorp.com.au>
To: Richard Henderson <rth(@twiddle.net>
Cc: linux-kernel@yvger.kernel.org

Subject: Re: in-kernel linking issues

In message <20021115142226.B25624@twiddle.net> you write:

> You've only got two relocation types, you don't need to worry about
> .got, .plt, .opd allocation, nor sorting sections into a required

> order, nor sorting COMMON symbols.

Hmm, OK, I guess this is where I say "patch welcome"?
Rusty.

Rusty's Lesson #6

Always Ask For A Patch
(David Miller Taught Me This)

@ December 2002: Richard Henderson

e-business

* We spent about a month working on using shared
libraries, mcluding porting to all the architectures.

— Turned out to need a minor toolchain change on amd64, and a
major change on MIPS.

— No code size difference for x86
— Reduces 1a64 by about 500 lines.
— Maybe 1n 2.7?

Rusty's Lesson #7

Even If The Code Is Useless, I Learned Something.

@

e-business

But...

Richard's Implementation used a neat trick to put the
“struct module” inside the module 1tself:

— struct module this module
__attribute ((section(".gnu.linkonce.this module")))

This statement mside the module.h header meant that all
modules contain the structure.

The “.gnu.linkonce” means that duplicates are discarded.
This makes the code slightly neater.
On December 27th, 2002, this change went to Linus.

Rusty's Lesson #3

You Can Look Really Smart By Copying Ideas
From Smart People.

@ | But...

e-business

* This also gives Dave Miller his page back:
module_aFIIoc(INIT SECTIONS)

module_glloc(OTHER SECTIONS)

struct module (inside other sections)

WASTED MEMORY: [II

Rusty's Lesson #9

Be Vicious With Code.
Be Nice With People.

© Stability

e-business

* [t took until January before most modules were back to
normal.

— 20 architectures
— 1600 modules (some very, very old)

— Thousands of new users

* Incremental improvements continue still.

Rusty's Lesson #10

No Feature Is Complete Until It Has Lots of Users.

New Features

C, New MODVERSIONS

e-business

* Normally, a module should not be mnserted mto kernels
different from the one 1t was compiled for

* CONFIG MODVERSIONS tries to fix it

— Old implementation worked, but was very messy.

— Changed names of all kernel symbols exported to modules,
using #define

e Kai Germaschewski and I wrote a new one

— Versions kept 1n separate sections
— Versions can be forced with modprobe —force

— Versioned modules can be inserted into non-versioned kernels

@

e-business

Vermagic

Less complete that modversions.

A special string m the “.modmfo” section placed in all
modules.

- eg. 2.6.0-test6-bk1 SMP PENTIUMII gcc-3.2
If 1t doesn't match, module will not load
— For modversions, skips first part of strings.

Can be forced with modprobe —force.

© New rmmod Options

e-business

* rmmod —force allows you to remove modules which are
In use

— Great for kernel development

* rmmod —wait allows you to shut down modules which are
In use

— The rmmod will finish when the module usage falls to O.

© Faster Reference Counting

e-business

* Per-cpu lockless reference counting for modules.
— Fastest reference counters in the kernel.
* System to stop all CPUs to examine and unload module

— Could be used for other things, such as resizing network hash
tables.

© Per-CPU Variable Support

e-business

* In 2.6 I introduced per-cpu variables
- DEFINE PER CPU(type, name)

* Vanables are placed n a special section, which 1s
duplicated for every CPU at boot.

* We allocate extra space mn this percpu section at boot

— Modules with “.data.percpu’” sections use this space.

@ Kernel Size

e-business

e New Features:
- New CONFIG MODVERSIONS: 104 lines

— module notifiers: 27 lines

- CONFIG KALLSYMS: 172 lines

— Centralized exception table code: 37 lines
— vermagic code: 15 lines

- rmmod —force and --wait: 65 lines

— Fast module reference counts: 148 lines

— per-cpu module allocator: 179 lines

— Discarding init sections of modules: 48 lines

e kernel/module.c in 2.6.0-test6: 1952 lines.

Rusty's Lesson #11

Good Code Lowers The Barriers:
More People Can Do More Cool Things.

C, Conclusion

e-business

* The new module code can be changed without having to
upgrade userspace tools.

e The new module code 1s much easier to read and
understand.

* All these new features were introduced without breaking
the userspace tools.

* Things will keep changing and improving.

© Legal Stuff

e-business

This work represents the view of the author and does not
necessarily represent the view of IBM.

Linux 1s a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

