
Modules in 2.6: Breaking The Kernel,
and What I Learned

Rusty Russell

IBM Linux Technology Center, OzLabs
Canberra, Australia

rusty@rustcorp.com.au
rusty@au.ibm.com

Contents
● Time Better Spent

● Who is Rusty Russell?

● 2001: A Small Problem

● 31 October 2002: Kernel Freeze

● Richard Henderson

● David S. Miller

● New Features

● Conclusion

Time Better Spent
● Read The Lions Book

● Read the original TDB source code.

● Read “Elements of Programming Style”

● Become familiar with the following software:

– gperf

– qemu

– rsync

– valgrind

– ccache

– distcc

Who Is Rusty Russell?
● Linux Kernel Programmer

– ipchains, netfilter, futexes, per-cpu variables, modules,...

● Author of the original Linux Graphing Project

– http://fcgp.sourceforge.net/

● Organizer of the first Australian Linux Conference

– http://www.linux.org.au/projects/calu/

● Author of Networking Concepts HOWTO

– http://www.netfilter.org/unreliable-guides/

● KernelTrap Interview:

– http://kerneltrap.org/node/view/892

2001: A Small Project

January 2001: Connection Tracking
● ip_conntrack: a module for tracking IP network

connections.

● All modules have a usage count.

● ip_conntrack usage count always zero

– When removed, waited (sometimes forever!) until all
connections ended.

● Making reference count increase per connection

– Slow

– Would make the module unremovable for most people.

● A new module unload method was needed.

March 2001: The Module Code
● How hard would it be to modify the module code?

Rusty's Lesson #1

Many Major Projects Start With:
“I Only Need To Change This One Thing...”

The Old Module Code
● Inserting a module is done as follows:

– query_module(QM_MODULES) to return list of modules

– query_module(QM_INFO) on each one to see if it's active

– query_module(QM_SYMBOLS) to get the values of symbols
exported by that module.

– create_module(name, size) to get the address of the module.

– Do module linking for that architecture.
● Perform relocations
● List dependencies in header

– Call init_module(name, struct module)
● Kernel verifies structure.
● Kernel attaches dependencies

The Old Module Code
● Changing the code is difficult, since userspace (modutils)

and kernel distributed separately.

● For example, to add a field to the module structure

– Inside the kernel, use mod_member_present() to detect old
userspace, and deal with it.

– Inside userspace, detect old kernel versions and deal with them.

July 2001: Some New Module Code
● I experimented with doing the linking inside the kernel.

● Inserting a module is done as follows:

– Call init_module(pointer, size, option-string)
● Kernel resolves symbols and dependencies
● Kernel parses user options
● Kernel calls init function.

● Old insmod: 7103 lines of code

New Insmod
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
 int fd = 0;
 void *p;
 struct stat st;

 if (argc > 1)
 fd = open(argv[1], O_RDONLY);

 fstat(fd, &st);
 p = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
 return syscall(__NR_init_module, p, st.st_size, argc>2 ? argv[2] : "");
}

Kernel Size
● Userspace gets smaller, but how much larger is the

kernel?

● 2.4 module code: 1284 lines

– create_module - 50 lines

– init_module - 230 lines

– delete_module - 80 lines

– query_module - 270 lines

– /proc/modules - 80 lines

– /proc/ksyms - 80 lines

Diagram of Old Module Code

Diagram of New Module Code

Kernel Size
● 2.4 module code: 1284 lines

● 2.6 module code: 1157 lines + arch code

● 2.6 i386 arch code: 130 lines (smallest)

● 2.6 ia64 arch code: 875 lines (largest)

Rusty's Lesson #2

You'll Only Ever Know If You Write The Code.

October 31 2002: Kernel Freeze

October 2002: Kernel Freeze
● As organized at the kernel summit, the kernel entered

Feature Freeze on October 31, 2002.

– The new module code was not in the kernel.

November 2002: Module Merge
● At breakfast before leaving Japan (for Spain), Anton

Blanchard tells me Linus has included my patch.

– But module parameter code is not included

– Userspace utilities are primitive (no modprobe)

– Only i386 works at all

● I didn't get much sleep in Spain.

Rusty's Lesson #3

Linus Always Chooses The Worst Time To Apply
Your Patch.

The Great Module War
It's still in flux, as Rusty combines world-wide travel plus
frantic bug-fixing as he is being pursued (virtually) around
the world by hordes of angry kernel developers.

-- Theodore Ts'o, Linux Kernel Mailing List

November 2002: David S Miller
● Dave Miller is the Linux Networking Maintainer.

● Dave Miller is the Sparc64 Architecture Maintainer.

● Dave Miller did the original SPARCLinux port.

David S. Miller
● Sparc and Sparc64 need modules placed in the lowest

2GB of memory.

– I knew this

– Architectures defined “module_alloc” which the module code
calls to allocate space for the two parts of the module

● The init code (to be discarded after initialization)
● The rest of the module

– The module structure itself was called using the normal
“kmalloc” inside the kernel.

David S Miller
● The Sparc allocator always allocates pages (4096 bytes):

David S Miller
To: rusty@rustcorp.com.au
Subject: Re: new module stuff
From: "David S. Miller" <davem@redhat.com>

Dude, you have to allocate the struct module in the module section just like
the old code. I build sparc64 kernel modules into the lower 32-bits of the
kernel address space, and if __init_module is kmalloc()'d it can't be relocated
properly.

David S Miller
● The obvious solution:

David S Miller
From: Rusty Russell <rusty@rustcorp.com.au>
To: "David S. Miller" <davem@redhat.com>
Subject: Re: new module stuff

In message <20021114.100125.118043272.davem@redhat.com> you write:
> How about this, in the module_alloc call you allocate size + sizeof(*mod)

I already tack the user-supplied options on the end of the module, so your
optimization interferes with my optimization 8)

I *will* code you a solution: struct module on sparc64 is 2368 bytes for
NR_CPUS=32 (384 for UP).

You deserve it for just getting down and helping code, rather than bitching
about breakage 8)

Thanks!
Rusty.

David S Miller
To: rusty@rustcorp.com.au
Subject: Re: new module stuff
From: "David S. Miller" <davem@redhat.com>

I'm not going to argue about 1 page for now, implement this fix however you
want and then we'll revisit this later. :-)

Rusty's Lesson #4

Dave Miller is Cool.

Rusty's Lesson #4a

Architecture Maintainers Are Some of The Smartest
(and Nicest) Programmers To Work With.

November 2002: Richard Henderson
● Richard Henderson is the Alpha Linux Maintainer.

● Richard Henderson is a GCC maintainer.

● Richard Henderson gave the keynote at the GCC summit.

December 2002: Richard Henderson
● Richard Henderson reported some problems he found in

my in-kernel module loader.

– He wrote some beautiful patches which I took.

One more thing:

Are you really REALLY sure you don't want to load ET_DYN or ET_EXEC
files (aka shared libraries or executables) instead of ET_REL files (aka .o
files)?

December 2002: Richard Henderson
● It turns out that shared objects are much simpler to load

than .o files

– Normally .so (ET_DYN) objects are compiled to be position
independent (-fPIC).

● This makes them slightly slower than normal code.

– But they don't have to be.

Rusty's Lesson #5

Ideas From Old Code Stay In Your Brain.

December 2002: Richard Henderson

From: Rusty Russell <rusty@rustcorp.com.au>
To: Richard Henderson <rth@twiddle.net>
Cc: linux-kernel@vger.kernel.org
Subject: Re: in-kernel linking issues

In message <20021115142226.B25624@twiddle.net> you write:
> You've only got two relocation types, you don't need to worry about
> .got, .plt, .opd allocation, nor sorting sections into a required
> order, nor sorting COMMON symbols.

Hmm, OK, I guess this is where I say "patch welcome"?

Rusty.

Rusty's Lesson #6

Always Ask For A Patch
(David Miller Taught Me This)

December 2002: Richard Henderson
● We spent about a month working on using shared

libraries, including porting to all the architectures.

– Turned out to need a minor toolchain change on amd64, and a
major change on MIPS.

– No code size difference for x86

– Reduces ia64 by about 500 lines.

– Maybe in 2.7?

Rusty's Lesson #7

Even If The Code Is Useless, I Learned Something.

But...
● Richard's Implementation used a neat trick to put the

“struct module” inside the module itself:

– struct module __this_module
__attribute__((section(".gnu.linkonce.this_module")))

● This statement inside the module.h header meant that all
modules contain the structure.

● The “.gnu.linkonce” means that duplicates are discarded.

● This makes the code slightly neater.

● On December 27th, 2002, this change went to Linus.

Rusty's Lesson #8

You Can Look Really Smart By Copying Ideas
From Smart People.

But...
● This also gives Dave Miller his page back:

Rusty's Lesson #9

Be Vicious With Code.
Be Nice With People.

Stability
● It took until January before most modules were back to

normal.

– 20 architectures

– 1600 modules (some very, very old)

– Thousands of new users

● Incremental improvements continue still.

Rusty's Lesson #10

No Feature Is Complete Until It Has Lots of Users.

New Features

New MODVERSIONS
● Normally, a module should not be inserted into kernels

different from the one it was compiled for

● CONFIG_MODVERSIONS tries to fix it

– Old implementation worked, but was very messy.

– Changed names of all kernel symbols exported to modules,
using #define

● Kai Germaschewski and I wrote a new one

– Versions kept in separate sections

– Versions can be forced with modprobe –force

– Versioned modules can be inserted into non-versioned kernels

Vermagic
● Less complete that modversions.

● A special string in the “.modinfo” section placed in all
modules.

– eg. 2.6.0-test6-bk1 SMP PENTIUMII gcc-3.2

● If it doesn't match, module will not load

– For modversions, skips first part of strings.

● Can be forced with modprobe –force.

New rmmod Options
● rmmod –force allows you to remove modules which are

in use

– Great for kernel development

● rmmod –wait allows you to shut down modules which are
in use

– The rmmod will finish when the module usage falls to 0.

Faster Reference Counting
● Per-cpu lockless reference counting for modules.

– Fastest reference counters in the kernel.

● System to stop all CPUs to examine and unload module

– Could be used for other things, such as resizing network hash
tables.

Per-CPU Variable Support
● In 2.6 I introduced per-cpu variables

– DEFINE_PER_CPU(type, name)

● Variables are placed in a special section, which is
duplicated for every CPU at boot.

● We allocate extra space in this percpu section at boot

– Modules with “.data.percpu” sections use this space.

Kernel Size
● New Features:

– New CONFIG_MODVERSIONS: 104 lines

– module notifiers: 27 lines

– CONFIG_KALLSYMS: 172 lines

– Centralized exception table code: 37 lines

– vermagic code: 15 lines

– rmmod –force and --wait: 65 lines

– Fast module reference counts: 148 lines

– per-cpu module allocator: 179 lines

– Discarding init sections of modules: 48 lines

● kernel/module.c in 2.6.0-test6: 1952 lines.

Rusty's Lesson #11

Good Code Lowers The Barriers:
More People Can Do More Cool Things.

Conclusion
● The new module code can be changed without having to

upgrade userspace tools.

● The new module code is much easier to read and
understand.

● All these new features were introduced without breaking
the userspace tools.

● Things will keep changing and improving.

Legal Stuff
This work represents the view of the author and does not

necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

