
TCP and Routing Developments in the
Linux Kernel

David S. Miller
(davem@davemloft.net)

TCP Congestion Control

● Several new algorithms
● TCP Reno was showing it's age
● Poor handling of long delay paths
● The larger the number of packets in the congestion

window the poorer Reno handled things.
● Newer algorithms attempt to recover more gracefully

from packet loss within a large window.

TCP Westwood+

● Calculates a bandwidth estimate.
● This estimate is sent through a low-pass filter, identical

to the one used for TCP RTO calculations.
● The bandwidth estimate guides congestion window

and slow-start threshold decisions.
● This scheme is effective but not as much so as BIC-

TCP (discussed later). Note however this could be due
to implementation errors.

TCP Vegas

● An algorithm which is quite old
● Most notable feature is that it tries to measure the

available bandwidth without packet loss.
● Traditional congestion control works by detecting

packet loss and pulling back the send rate accordingly.
● The major flaw of this technique is that it performs

poorly when there is traffic in the reverse path.

BIC-TCP

● A very new algorithm, current kernels implement
version 1.0

● Version 1.1 released recently, will merge
● Uses a combination of binary search and linear growth

to find the appropriate congestion window safely yet
fast.

● Provides high levels of TCP fairness compared to other
schemes.

● It is the best performer in our testing.

TCP Segmentation Offload

● Basic idea:
– Send one IP+TCP header template plus huge data portion
– Card uses template to produce multiple TCP packets

● The advantage:
– Less cpu processing, building headers
– Less bus/memory bandwidth usage

● Initial implementation had serious problems, it worked
but violated congestion control rules.

Fixing TSO Congestion Control

● Keep track of how many real packets each TSO packet
contains.

● Use this 'packet count' in congestion control decisions.
● When ACKs arrive, trim sub-packets from TSO frames

and liberate socket send buffer space.
● Never allow TSO packet size to exceed some fraction

of congestion window.

Remaining TSO Issues

● Major episodes of loss, or other indications that
connection is 'sick' cause TSO to be disabled.

● We can remove this disabling only by adding
sophisticated Selective ACK tracking state for the sake
of TSO frames. Re-segmentation is too expensive and
not an option.

● TSO, even with current fixes, can still be a bit too
bursty. Not an easy problem to solve.

TCP Routing

● Current layered architecture:
– FIB Rules, which point to
– FIB Nodes, which are used to generate
– Routing Cache entries

● FIB Node layer algorithms are showing their age, and
need complexity improvement.

● When Routing Cache meets DoS level traffic patterns,
performance is limited by two things:
– Routing Cache recycling performance
– FIB Node lookup complexity

State of Routing Lookups

● Longest Matching Prefix is a well researched topic.
● Unfortunately, it's a well patented topic too :-(
● For most solutions, one must pick two out of:

– Fast lookup performance
– Fast table update
– Low memory usage

● Tree Bitmap is the one exception currently and is
considered state of the art right now.

Routing Lookup Papers

● 'Survey and Taxonomy of IP Address Lookup
Algorithms' by Miguel A. Ruix-Sanchez et al.

● 'Tree Bitmap: Hardware/Software IP Lookups with
Incremental Updates' by Will Eatherton, George
Varghese and Zubin Dittia

● 'Scalable High-Speed Prefix Matching' by Marcel
Waldvogel et al.

● 'nCRT and Bonsai: Two Fast Longest Prefix Match
Algorithms' by Abhishek Singh et al.

Patents patents patents...

● Tree Bitmap patented by Cisco, an attempt was made
to obtain permission to use in GPL code but this has
failed.

● Binary Search on Hash Tables is patented by the
University of Washington and work is nearly complete
to get permission to use this algorithm in GPL code.

● LCP-Trie algorithm we have full permission to use
already, Robert Olsson working on this.

Preliminary Issues in Routing

● Current FIB Node lookup layer was not friendly enough
to add new algorithms

● Work proceeds to try and build a pluggable route
lookup architecture

● Major issue is separation of pure destination IP
address longest matching prefix lookup from other
details of routing:
– TOS and priority sub-keys
– FIB Semantics

Current Plan

● Complete routing lookup abstraction
● Integrate Binary Search and LPC-Trie implementations
● Benchmark, test, and optimize
● Once mid-level lookup complexity is minimized,

reanalyze performance characteristics of routing
cache.

● Continue to follow research on LMP algorithms, and
perhaps make our own :-)

Binary Search on Hash Tables

● 32 hash tables, one for each ipv4 prefix length
● 'marker' nodes are added to the hash tables to guide

the binary search
● Seeing a 'marker' tells the lookup algorithm which

direction to take the binary search
● Lookup performance is great, for ipv6 too
● Table updates are very complex, we believe it can be

made to perform acceptably, however.
● Memory usage is not that bad.

LPC Trie

● Level and Path Compressed Trie
● LMP search is a two dimensional problem, each node

traversal in LPC search attempts to make progress in
both dimensions at same time.

● Lookup complexity is O(W/k) where 'W' is width in bits
of the keys (32 for IPV4) and 'k' is the Trie stride
chosen by the algorithm.

● Table update and memory complexity is high

Credits

● Mashimaro, official mascot of Linux networking
development

● Stephen Hemminger for work on TCP congestion
control integration

● Robert Olsson and Jamal Hadi Salim for routing and
traffic classification work

● Yoshifuji and entire USAGI team for ipv6 work
● Herbert Xu for keeping IPSEC in shape
● Alexey Kuznetsov, he gave us the foundation

Thank You

● Tetsuro Yogo for inviting me here and making this trip
as comfortable as possible.

● All conference organizers and sponsors for making this
event possible

● Linus Torvalds, for giving us something to be talking
about today

