TCP and Routing Developments in the
Linux Kernel

David S. Miller
(davem@davemloft.net)

I TCP Congestion Control

e TCP Renowas showing It's age

* Poor handling of long delay paths

* The larger the number of packets in the congestion
window the poorer Reno handled things.

* Newer algorithms attempt to recover more gracefully
from packet loss within a large window.

I * Several new algorithms

I TCP Westwood+

* This estimate Is sent through a low-pass filter, identical
to the one used for TCP RTO calculations.

* The bandwidth estimate guides congestion window
and slowstart threshold decisions.

* This scheme Is effective but not as much so as BIC-
TCP (discussed later). Note however this could be due
to iInmplementation errors.

I e Calculates a bandwidth estimate.

TCP Vegas

* An algorithmwhich is quite old

* Most notable feature Is that It tries to measure the
avallable banawidth without packet loss.

* Traditional congestion control works by detecting
packet loss and pulling back the send rate accordingly.

* The major flaw of this technique Is that It performs
poorly when there is traffic in the reverse path.

I BIC-TCP

version 1.0

* \ersion 1.1 released recently, will merge

* Uses a combination of binary search and linear groth
to find the appropriate congestion window safely yet
fast.

* Provides high levels of TCP fairness compared to other
schemes.

* |tisthe best performer in our testing.

I Avery new algorithm, current kernels implement

I TCP Segmentation Offload

— Send one IP+TCP header template plus huge data portion
— Card uses tenplate to produce multiple TCP packets

* The advantage:
— Less cpu processing, building headers
— Less bus/memory bandwidth usage
* |niial implementation had serious problents, it worked
but violated congestion control rules.

I * Basic idea:

Hxing TSO Congestion Control

Keep track of how many real packets each TSO packet

contains.

Use this 'packet count' in congestion control decisions.

\When ACKSs arrive, trim

sub-packets from TSO frames

and liberate socket send buffer space.

Never allow TSO packe

' size to exceed some fraction

of congestion Window.

Remaining TSO Issues

* Major episodes of loss, or other indications that
connection is 'sick' cause TSO to be disabled.

* e can remove this disabling only by adding
sophisticated Selective ACK tracking state for the sake
of TSO frames. Re-segmentation is too expensive and
not an option.

e TSO, even with current fixes, can still be a bit too
bursty. Not an easy problem to solve.

I TCP Routing

- HB Rules, which point to
— FIB Nodes, which are used to generate
- Routing Cache entries

* HB Node layer algorithms are showing their age, and
need complexity improvement.
* \When Routing Cache meets DoS level traffic patterns,
performance is limited by two things:
— Routing Cache recycling performance
— FIB Node lookup complexity

I * Current layered architecture:

State of Routing Lookups

_ongest Matching Prefix is a well researched topic.
Unfortunately, it's a well patented topic too

—Or most solutions, one must pick two out of:
— Fast lookup performance

— Fast table update

— Low memory usage

Tree Bitmap Is the one exception currently and is
considered state of the art right now.

I Routing Lookup Papers

* 'Survey and Taxonomy of IP Address Lookup
I Algorithms' by Miguel A. Ruix-Sanchez et al.

* "Tree Bitmayp: Hardware/Software IP Lookups with
Incremental Updates' by Wl Eatherton, George
Varghese and Zubin Dittia

* 'Scalable High-Speed Prefix Matching' by Marcel
Waldvogel et al.

* 'nCRT and Bonsai: Two Fast Longest Prefix Match
Algorithms' by Abhishek Singh et al.

Patents patents patents...

Tree Bitmap patented by Cisco, an attempt was made
to obtain permission to use in GPL code but this has
failed.

Binary Search on Hash Tables is patented by the
University of Washington and work is nearly complete
to get permission to use this algorithm in GPL code.
LCP-Trie algorithm we have full permission to use
already, Robert Olsson working on this.

I Preliminary Issues in Routing

I Current FIB Node lookup layer was not friendly enough

to add new algonthms

* Work proceeds to try and build a pluggable route

lookup architecture

* Major issue is separation of pure destination IP

address longest matching prei
detalls of routing:

— TOS and priority sub-keys

- HB Semantics

1X lookup from other

Current Plan

* Complete routing lookup abstraction

* |Integrate Binary Search and LPC-Trie implementations

* Benchmark, test, and optimze

* Once md-level lookup complexity Is minimized,
reanalyze performance characteristics of routing
cache.

* Continue to follow research on LMP algorithms, and
perhaps make our own :-)

I Binary Search on Hash Tables

* 'marker' nodes are added to the hash tables to guide
the binary search

* Seeing a 'marker tells the lookup algorithmwhich
direction to take the binary search

* | ookup performance Is great, for ipv6 too

 Table updates are very complex, we believe it can be
made to perform acceptably, however.

* Memory usage Is not that bad.

I 32 hash tables, one for each ipv4 prefix length

I LPC Trie

* LMP search is a two dimensional problem, each node
traversal in LPC search attenmpts to make progress in
both dimensions at same time.

* | ookup complexity is O(WK) where 'W is width in bits
of the keys (32 for IPV4) and 'K’ Is the Trie stride
chosen by the algorithm.

* Table update and memory conplexity Is high

I * |evel and Path Compressed Trie

I Credits

development

 Stephen Hemminger for work on TCP congestion
control integration

* Robert Olsson and Jamal Hadi Salim for routing and
traffic classification work

* Yoshifuji and entire USAGI team for ipv6 work

* Herbert Xu for keeping IPSEC in shape

* Alexey Kuznetsov, he gave us the foundation

I * Mashimaro, official mascot of Linux networking

I Thank You
* Tetsuro Yogo for inviting me here and making this trip
I as comfortable as possible.
* All conference organizers and sponsors for making this
event possible

* Linus Torvalds, for giving us something to be talking
about today

